
Shift Left Performance
Automated Code inspection for Performance

©Appentra Solutions S.L.
April 2022

Codee Training Series
April 26-27, 2022

Shift Left Performance

Second: Addressing GPU challenges with Codee

2

#2 Usage of Codee for GPU programming (1/2)

● The GPU programming challenges

● Memory usage, massive parallelism exploitation, and data transfers minimization

● Codee’s support to find opportunities for offloading and optimize memory layout for

data transfers

● Hands-on: Optimizing MATMUL on Perlmutter

Format:

● Remote lectures (~30’), demos, and hands-on sessions

Shift Left Performance

What are the differences between CPUs and GPUs?

3

Device
(GPU)

Host
(CPU)

● First, the number of cores available in the hardware
○ GPUs have many many more cores than CPUs

● Second, the grouping of the threads at the hardware level
○ In CPUs, the threads are not grouped and all the threads are executed at the same time
○ In GPUs, the threads are grouped and all the threads in a group are executed at the same

time.

● Third, the complexity of the memory design
○ In CPUs, all the threads access to all the memory
○ In GPUs, there are constraints in the memory that can be accessed by the threads (e.g.,

cache, texture, scratchpad, global).

● Fourth, execution of instructions in vector mode
○ Both CPUs and GPUs exploit vector processing, although different “flavours” of it.

Shift Left Performance

The GPU Execution Model

Device
(GPU)Host

(CPU)

Device
Memory

Host
Memory

4

● Use of a host-driven execution model.
● Sequential code runs on a conventional

processor.
● Computationally intensive parallel pieces

of code (kernels) run on an accelerator
such as a GPU.

● To maximize performance,
high-performance applications generally
conform to the following three rules of
accelerator programming:
○ Transfer the data onto the device and keep it

there.
○ Give the device enough work to do.
○ Focus on data reuse within the device(s) to

avoid memory bandwidth bottlenecks

Shift Left Performance 5

The GPU programming challenges: Example codes…

Challenges of GPU acceleration
addressed in introductory course

Other GPU programming challenges to be addressed in
next advanced course

Find
opportunities
for offloading

Optimize
memory layout

for data
transfers

Identify
defects in

data transfers

Exploit massive
parallelism

through loop
nest collapsing

Minimize data
transfers

across
consecutive
loop nests

Minimize data
transfers
through

convergence
loops

Identify
auxiliary

functions to be
offloaded

Example
codes used
in this
introductor
y course

PI x - - - - - -

MATMUL x x x x x - -

LULESHmk x x x x x x x

HEAT x - - - x x -

Your code! Probably all of these challenges apply, and even more!

Shift Left Performance

The GPU Programming Challenges in this Introductory Course

6

Challenge #1: Find opportunities for offloading

● Code patterns: computation patterns (eg. loops will execute correctly on the GPU)
● On GPUs: Start offloading computations to the GPU, guaranteed correctness!
● On CPUs: Usually the same code analysis is required to execute the computations in parallel correctly!

Challenge #2: Optimize memory layout for data transfers

● Code patterns: memory patterns (eg. shaping arrays)
● On GPUs: Watch your data structure design as it may break your code!
● On CPUs: Hardware keeps memory consistency, so focus mostly on locality!

Challenge #3: Identify defects in data transfers

● Code patterns: computation and memory patterns (eg. deep copy)
● On GPUs: Data transfers for complex data structs are often not managed automatically!
● On CPUs: Often not a big issue as there is shared memory!

Shift Left Performance

Why using additional tools apart from APIs?

● The OpenACC Application Programming Interface. Version 2.7 (November 2018) 🔗
○ “does not describe automatic detection of parallel regions or automatic offloading of regions of code to

an accelerator by a compiler or other tool.”
○ “if one thread updates a memory location and another reads the same location, or two threads store a

value to the same location, the hardware may not guarantee the same result for each execution.”
○ “it is (...) possible to write a compute region that produces inconsistent numerical results.”
○ “Programmers need to be very careful that the program uses appropriate synchronization to ensure

that an assignment or modification by a thread on any device to data in shared memory is complete and
available before that data is used by another thread on the same or another device.”

● Programmers are responsible for making good use of Application Programming Interface (API)

○ This applies to OpenACC, OpenMP
○ But also to any other API, such as MPI, compiler pragmas, and even the programming language itself

7

https://www.openacc.org/sites/default/files/inline-files/OpenACC.2.7.pdf

Shift Left Performance

Shaping Arrays in OpenMP/OpenACC

8

● Provide the compiler with information about array size and array ranges.

● Helps the compiler ensure correct memory allocation on the device

● Add the shape specification to the data clauses, e.g.:

x[start:count]

where start is the first element to be copied and count is the number of elements to copy.

● Allows storing of only part of the array on the device

#pragma acc data create(x[0:N]) copyout(y[0:N])

!$acc data create(x(0:N)) copyout(y(0:N))

Shift Left Performance

1 2 3 4 5

VECTOR size 5

Shaping Arrays 1D in OpenMP/OpenACC

● Vectors are typically implemented as arrays 1D.

● Developer can choose between static and dynamic memory
allocation.
○ Static arrays are allocated on the stack, which is limited.
○ As a result, large arrays can make the application crash.

● Actual data is stored in consecutive memory locations, which
triggers compiler optimizations.

A

A
double *A = malloc(...)
for(i) {
 … A[i] …
}

1 2 3 4 5

double A[9]
for(i) {
 … A[i] …
}

1 2 3 4 5

9

Shift Left Performance

1 2 3

4 5 0

0 6 0

MATRIX 3x3

Shaping Arrays 2D in OpenMP/OpenACC

● Matrices are typically implemented as “arrays 2D”, but what is
the actual memory layout?
○ It depends on the programming language: row-major in C/C++ and

column-major in Fortran.

● Developer can choose between static and dynamic memory
allocation.

● Actual data MAY NOT be stored in consecutive memory
locations, disabling compiler optimizations.

10

Shift Left Performance

Shaping Arrays 2D in OpenMP/OpenACC

● Statically allocated arrays guarantee that actual data
is stored in consecutive memory locations. Note that
C/C++ and Fortran defer in the order of the data
inside de consecutive memory region.

A

double A[3][3]
for(i) {
 for(j) {
 … A[i][j] …
 }
}

1 2 3 4 5 0 0 6 0

11

1 2 3

4 5 0

0 6 0

MATRIX 3x3

Shift Left Performance

Shaping Arrays 2D in OpenMP/OpenACC

● Dynamically allocated arrays are controlled by the
programmer, who is responsible for memory allocation
and initialization. How can the programmer guarantee
consecutive memory allocation?

● Dynamically allocated arrays without consecutive
memory:

A

double **A = malloc(3)
for(i) {
 A[i] = malloc(3)
}
for(i) {
 for(j) {
 … A[i][j] …
 }
}

1 2 3

4 5 0

0 6 0

12

1 2 3

4 5 0

0 6 0

MATRIX 3x3

Shift Left Performance

Shaping Arrays 2D in OpenMP/OpenACC

● Dynamically allocated arrays with consecutive memory:
Several options are possible…

● Option 1:
○ Data elements are stored in one single consecutive array
○ An auxiliary pointer-type array is used to facilitate access to each row
○ This enables array accesses through the common notation A[i][j]

double **A = malloc(3)
double *Aaux = malloc(3x3)
for(i) {
 A[i] = Aaux + i * 3
}
for(i) {
 for(j) {
 … A[i][j] …
 }
}

A

1 2 3 4 5 0 0 6 0

In this design, the programmer needs to allocate two separate
arrays and initialize the pointers as offset with respect to the
beginning of the consecutive memory region.

13

1 2 3

4 5 0

0 6 0

MATRIX 3x3

Shift Left Performance

Shaping Arrays 2D in OpenMP/OpenACC

double *A = malloc(3x3)
for(i) {
 for(j) {
 … A[i*3+j] …
 }
}

A
1 2 3 4 5 0 0 6 0

And in this design, the programmer minimizes the memory
consumption but must change all of the accesses in the code.

14

1 2 3

4 5 0

0 6 0

MATRIX 3x3

● Many scientific codes use an alternative data structure
● Option 2:

○ Data elements are stored in one single consecutive array
○ Rewrite all the 2D array accesses as 1D array accesses
○ Typically A[i][j] is rewritten as A[i*N+j]

Shift Left Performance

Shaping Arrays 2D in OpenMP/OpenACC

● Dynamically allocated arrays for sparse matrices:
Sparse storage format uses several auxiliary arrays to
avoid storing the elements with value equal to zero.

● For example: Compressed Row Storage (CRS) format

double *A
int *rowIdx
int *colIdx

A

rowIdx

colIdx

for(i) {
 for(j=rowIdx(i),rowIdx(i+1)-1) {
 … A[j] …
 }
}

1 2 3 4 5 6

0 1 2 0 1 1

0 3 5 6

15

1 2 3

4 5 0

0 6 0

MATRIX 3x3

Shift Left Performance

How array shaping affects
in OpenMP/OpenACC?

16

● Array shaping in
OpenMP/OpenACC
affects to how to code
data transfers.

● OpenMP/OpenACC
clauses that tell the
compiler what data
must be transferred
between CPU memory
and GPU memory and
how.

● MATMUL example
code using double**
data type.

// C (m x n) = A (m x p) * B (p x n)
void matmul(size_t m, size_t n, size_t p, double **A, double **B, double **C) {
. . .
 // Accumulation
 #pragma acc data copyin(A[0:m][0:p], B[0:p][0:n], m, n, p) copy(C[0:m][0:n])
 {
 #pragma acc parallel
 {
 #pragma acc loop
 for (size_t i = 0; i < m; i++) {
 for (size_t j = 0; j < n; j++) {
 for (size_t k = 0; k < p; k++) {
 C[i][j] += A[i][k] * B[k][j];
 }
 }
 }
 } // end parallel
 } // end data
}
. . .

. . .

// C (m x n) = A (m x p) * B (p x n)
void matmul(size_t m, size_t n, size_t p, double **A, double **B, double **C) {
. . .

 // Accumulation
 #pragma omp target enter data map(to: A[0:m])
 for(int i0 = 0; i0 < m; ++i0) {
 #pragma omp target enter data map(to: A[i0][0:p])
 }
 #pragma omp target enter data map(to: B[0:p])
 for(int i0 = 0; i0 < p; ++i0) {
 #pragma omp target enter data map(to: B[i0][0:n])
 }
 #pragma omp target enter data map(to: C[0:m])
 for(int i0 = 0; i0 < m; ++i0) {
 #pragma omp target enter data map(to: C[i0][0:n])
 }
 #pragma omp target teams distribute parallel for shared(A, B, m, n, p) map(to: m, n, p) schedule(static)
 for (size_t i = 0; i < m; i++) {
 for (size_t j = 0; j < n; j++) {
 for (size_t k = 0; k < p; k++) {
 C[i][j] += A[i][k] * B[k][j];
 }
 }
 }
 for(int i0 = 0; i0 < m; ++i0) {
 #pragma omp target exit data map(from: C[i0][0:n])
 }
 #pragma omp target exit data map(from: C[0:m])
}
. . .

codee_com

company/codee-com/

www.codee.com

info@codee.com

Subscribe: codee.com/newsletter/

USA - Spain

https://twitter.com/codee_com
https://www.linkedin.com/company/codee-com
https://twitter.com/codee_com
https://www.linkedin.com/company/codee-com
http://www.codee.com
mailto:info@appentra.com
https://www.appentra.com/blog/newsletter/

